in

A pathogenicity locus of Streptococcus gallolyticus subspecies gallolyticus

[ad_1]

  • Schlegel, L., Grimont, F., Ageron, E., Grimont, P. A. D. & Bouvet, A. Reappraisal of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex and related species: Description of Streptococcus gallolyticus subsp. gallolyticus subsp. nov., S. gallolyticus subsp. macedonicus subsp. nov. and S. gallolyticus subsp. pasteurianus subsp. nov. Int. J. Syst. Evol. Microbiol. 53(Pt 3), 631–645 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kumar, R., Herold, J. L., Taylor, J., Xu, J. & Xu, Y. Variations among Streptococcus gallolyticus subsp. gallolyticus strains in connection with colorectal cancer. Sci. Rep. 8(1), 1514 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taylor, J. C. et al. A type VII secretion system of Streptococcus gallolyticus subsp. gallolyticus contributes to gut colonization and the development of colon tumors. PLoS Pathog. 17(1), e1009182 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, R. et al. Streptococcus gallolyticus subsp gallolyticus promotes colorectal tumor development. PLoS Pathog. 13(7), e1006440 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marmolin, E. S. et al. Bacteremia with the bovis group streptococci: Species identification and association with infective endocarditis and with gastrointestinal disease. Diagn. Microbiol. Infect. Dis. 85(2), 239–242 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Corredoira, J. et al. Differences between endocarditis caused by Streptococcus bovis and Enterococcus spp. and their association with colorectal cancer. Eur. J. Clin. Microbiol. Infect. Dis. 34(8), 1657–1665 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boleij, A. & Tjalsma, H. Gut bacteria in health and disease: A survey on the interface between intestinal microbiology and colorectal cancer. Biol. Rev. Camb. Philos. Soc. 87(3), 701–730 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Boleij, A., van Gelder, M. M., Swinkels, D. W. & Tjalsma, H. Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: Systematic review and meta-analysis. Clin. Infect. Dis. 53(9), 870–878 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abdulamir, A. S., Hafidh, R. R. & Abu, B. F. The association of Streptococcus bovis/gallolyticus with colorectal tumors: The nature and the underlying mechanisms of its etiological role. J. Exp. Clin. Cancer Res. 30, 11 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta, A., Madani, R. & Mukhtar, H. Streptococcus bovis endocarditis, a silent sign for colonic tumour. Colorectal Dis. 12(3), 164–171 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Waisberg, J., Matheus, C. E. O. & Pimenta, J. Infectious endocarditis from Streptococcus bovis associated with colonic carcinoma: Case report and literature review. Arq. Gastroenterol. 39(3), 177–180 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Alazmi, W., Bustamante, M., O’Loughlin, C., Gonzalez, J. & Raskin, J. B. The association of Streptococcus bovis bacteremia and gastrointestinal diseases: A retrospective analysis. Dig. Dis. Sci. 51(4), 732–736 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Gold, J. S., Bayar, S. & Salem, R. R. Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch. Surg. 139(7), 760–765 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Corredoira, J. et al. The clinical epidemiology and malignancies associated with Streptococcus bovis biotypes in 506 cases of bloodstream infections. J. Infect. 71(3), 317–325 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, Y., Weng, Y., Gan, H., Zhao, X. & Zhi, F. Streptococcus gallolyticus conspires myeloid cells to promote tumorigenesis of inflammatory bowel disease. Biochem. Biophys. Res. Commun. 506(4), 907–911 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kwong, T. N. Y. et al. Association between bacteremia from specific microbes and subsequent diagnosis of colorectal cancer. Gastroenterology 155(2), 383–90.e8 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25(4), 667–678 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perichon, B. et al. Detection of Streptococcus gallolyticus and four other CRC-associated bacteria in patient stools reveals a potential “Driver” Role for Enterotoxigenic Bacteroides fragilis. Front. Cell. Infect. Microbiol. 12, 794391 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdulamir, A. S., Hafidh, R. R. & Bakar, F. A. The association of Streptococcus bovis/gallolyticus with colorectal tumors: The nature and the underlying mechanisms of its etiological role. J. Exp. Clin. Cancer Res. 30, 11 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taddese, R. et al. Growth rate alterations of human colorectal cancer cells by 157 gut bacteria. Gut Microbes. 12(1), 1–20 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Danne, C., Guerillot, R., Glaser, P., Trieu-Cuot, P. & Dramsi, S. Construction of isogenic mutants in Streptococcus gallolyticus based on the development of new mobilizable vectors. Res. Microbiol. 164(10), 973–978 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Darling, A. C., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14(7), 1394–1403 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01156-3 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305(3), 567–580 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pallen, M. J. The ESAT-6/WXG100 superfamily and a new Gram-positive secretion system? Trends Microbiol. 10(5), 209–212 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hildebrand, A., Remmert, M., Biegert, A. & Soding, J. Fast and accurate automatic structure prediction with HHpred. Proteins 77(Suppl 9), 128–132 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poulsen, C., Panjikar, S., Holton, S. J., Wilmanns, M. & Song, Y. H. WXG100 protein superfamily consists of three subfamilies and exhibits an α-helical C-terminal conserved residue pattern. PLoS ONE 9(2), e89313 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whitney, J. C. et al. A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. Elife https://doi.org/10.7554/eLife.26938 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, D., de Souza, R. F., Anantharaman, V., Iyer, L. M. & Aravind, L. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct. 7, 18 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, T. A., Pazos, M., Surette, M. G., Vollmer, W. & Whitney, J. C. Molecular basis for immunity protein recognition of a type VII secretion system exported antibacterial toxin. J. Mol. Biol. 430(21), 4344–4358 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, G. F., Wang, X. X., Su, H. Z. & Lu, G. T. Progress on the GntR family transcription regulators in bacteria. Yi Chuan 43(1), 66–73 (2021).

    PubMed 

    Google Scholar 

  • Chatterjee, A., Willett, J. L. E., Dunny, G. M. & Duerkop, B. A. Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genet. 17(1), e1009204 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taddese, R. et al. Streptococcus gallolyticus increases expression and activity of aryl hydrocarbon receptor-dependent CYP1 biotransformation capacity in colorectal epithelial cells. Front. Cell. Infect. Microbiol. 11, 740704 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aymeric, L. et al. Colorectal cancer specific conditions promote. Proc. Natl. Acad. Sci. USA 115(2), E283–E291 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martins, M. et al. The Pil3 pilus of Streptococcus gallolyticus binds to intestinal mucins and to fibrinogen. Gut Microbes. 7(6), 526–532 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martins, M. et al. Streptococcus gallolyticus Pil3 Pilus is required for adhesion to colonic mucus and for colonization of mouse distal colon. J. Infect. Dis. 212(10), 1646–1655 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Danne, C. et al. Molecular characterization of a Streptococcus gallolyticus genomic island encoding a pilus involved in endocarditis. J. Infect. Dis. 204(12), 1960–1970 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sillanpaa, J. et al. A collagen-binding adhesin, Acb, and ten other putative MSCRAMM and pilus family proteins of Streptococcus gallolyticus subsp. gallolyticus (Streptococcus bovis Group, biotype I). J. Bacteriol. 191(21), 6643–6653 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schiltz, C. J., Lee, A., Partlow, E. A., Hosford, C. J. & Chappie, J. S. Structural characterization of Class 2 OLD family nucleases supports a two-metal catalysis mechanism for cleavage. Nucleic Acids Res. 47(17), 9448–9463 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aravind, L., Leipe, D. D. & Koonin, E. V. Toprim–a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res. 26(18), 4205–4213 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koonin, E. V. & Gorbalenya, A. E. The superfamily of UvrA-related ATPases includes three more subunits of putative ATP-dependent nucleases. Protein Seq. Data Anal. 5(1), 43–45 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Kowalski, J. C. et al. Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: Coincidence of computational and molecular findings. Nucleic Acids Res. 27(10), 2115–2125 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Roey, P., Meehan, L., Kowalski, J. C., Belfort, M. & Derbyshire, V. Catalytic domain structure and hypothesis for function of GIY-YIG intron endonuclease I-TevI. Nat. Struct. Biol. 9(11), 806–811 (2002).

    PubMed 

    Google Scholar 

  • Truglio, J. J. et al. Structural insights into the first incision reaction during nucleotide excision repair. EMBO J. 24(5), 885–894 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunin-Horkawicz, S., Feder, M. & Bujnicki, J. M. Phylogenomic analysis of the GIY-YIG nuclease superfamily. BMC Genom. 7, 98 (2006).

    Article 

    Google Scholar 

  • Ibryashkina, E. M., Sasnauskas, G., Solonin, A. S., Zakharova, M. V. & Siksnys, V. Oligomeric structure diversity within the GIY-YIG nuclease family. J. Mol. Biol. 387(1), 10–16 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bruand, C. & Ehrlich, S. D. UvrD-dependent replication of rolling-circle plasmids in Escherichia coli. Mol. Microbiol. 35(1), 204–210 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, T. L. et al. Biochemical characterization of the Staphylococcus aureus PcrA helicase and its role in plasmid rolling circle replication. J. Biol. Chem. 277(48), 45880–45886 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • del Solar, G., Giraldo, R., Ruiz-Echevarría, M. J., Espinosa, M. & Díaz-Orejas, R. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62(2), 434–464 (1998).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naqvi, A., Tinsley, E. & Khan, S. A. Purification and characterization of the PcrA helicase of Bacillus anthracis. J. Bacteriol. 185(22), 6633–6639 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan, S. A. Rolling-circle replication of bacterial plasmids. Microbiol. Mol. Biol. Rev. 61(4), 442–455 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan, S. A. Plasmid rolling-circle replication: Recent developments. Mol. Microbiol. 37(3), 477–484 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soultanas, P. et al. Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase. Nucleic Acids Res. 27(6), 1421–1428 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • [ad_2]

    Source link

    What do you think?

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    GIPHY App Key not set. Please check settings

      STI MorningAfter Science GettyImages 1160661917

      A ‘Morning-After Pill’ for Sexually Transmitted Infections Is Almost Here

      NewsImage vcsPRAsset 3966284 122327 27761751 3744 4553 b1eb 140b2dfc1242 0

      Converged Security Solutions (CSS) Appoints Chris Baldsley as New Chief Financial Officer