Schlegel, L., Grimont, F., Ageron, E., Grimont, P. A. D. & Bouvet, A. Reappraisal of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex and related species: Description of Streptococcus gallolyticus subsp. gallolyticus subsp. nov., S. gallolyticus subsp. macedonicus subsp. nov. and S. gallolyticus subsp. pasteurianus subsp. nov. Int. J. Syst. Evol. Microbiol. 53(Pt 3), 631–645 (2003).
Google Scholar
Kumar, R., Herold, J. L., Taylor, J., Xu, J. & Xu, Y. Variations among Streptococcus gallolyticus subsp. gallolyticus strains in connection with colorectal cancer. Sci. Rep. 8(1), 1514 (2018).
Google Scholar
Taylor, J. C. et al. A type VII secretion system of Streptococcus gallolyticus subsp. gallolyticus contributes to gut colonization and the development of colon tumors. PLoS Pathog. 17(1), e1009182 (2021).
Google Scholar
Kumar, R. et al. Streptococcus gallolyticus subsp gallolyticus promotes colorectal tumor development. PLoS Pathog. 13(7), e1006440 (2017).
Google Scholar
Marmolin, E. S. et al. Bacteremia with the bovis group streptococci: Species identification and association with infective endocarditis and with gastrointestinal disease. Diagn. Microbiol. Infect. Dis. 85(2), 239–242 (2016).
Google Scholar
Corredoira, J. et al. Differences between endocarditis caused by Streptococcus bovis and Enterococcus spp. and their association with colorectal cancer. Eur. J. Clin. Microbiol. Infect. Dis. 34(8), 1657–1665 (2015).
Google Scholar
Boleij, A. & Tjalsma, H. Gut bacteria in health and disease: A survey on the interface between intestinal microbiology and colorectal cancer. Biol. Rev. Camb. Philos. Soc. 87(3), 701–730 (2012).
Google Scholar
Boleij, A., van Gelder, M. M., Swinkels, D. W. & Tjalsma, H. Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: Systematic review and meta-analysis. Clin. Infect. Dis. 53(9), 870–878 (2011).
Google Scholar
Abdulamir, A. S., Hafidh, R. R. & Abu, B. F. The association of Streptococcus bovis/gallolyticus with colorectal tumors: The nature and the underlying mechanisms of its etiological role. J. Exp. Clin. Cancer Res. 30, 11 (2011).
Google Scholar
Gupta, A., Madani, R. & Mukhtar, H. Streptococcus bovis endocarditis, a silent sign for colonic tumour. Colorectal Dis. 12(3), 164–171 (2010).
Google Scholar
Waisberg, J., Matheus, C. E. O. & Pimenta, J. Infectious endocarditis from Streptococcus bovis associated with colonic carcinoma: Case report and literature review. Arq. Gastroenterol. 39(3), 177–180 (2002).
Google Scholar
Alazmi, W., Bustamante, M., O’Loughlin, C., Gonzalez, J. & Raskin, J. B. The association of Streptococcus bovis bacteremia and gastrointestinal diseases: A retrospective analysis. Dig. Dis. Sci. 51(4), 732–736 (2006).
Google Scholar
Gold, J. S., Bayar, S. & Salem, R. R. Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch. Surg. 139(7), 760–765 (2004).
Google Scholar
Corredoira, J. et al. The clinical epidemiology and malignancies associated with Streptococcus bovis biotypes in 506 cases of bloodstream infections. J. Infect. 71(3), 317–325 (2015).
Google Scholar
Zhang, Y., Weng, Y., Gan, H., Zhao, X. & Zhi, F. Streptococcus gallolyticus conspires myeloid cells to promote tumorigenesis of inflammatory bowel disease. Biochem. Biophys. Res. Commun. 506(4), 907–911 (2018).
Google Scholar
Kwong, T. N. Y. et al. Association between bacteremia from specific microbes and subsequent diagnosis of colorectal cancer. Gastroenterology 155(2), 383–90.e8 (2018).
Google Scholar
Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25(4), 667–678 (2019).
Google Scholar
Perichon, B. et al. Detection of Streptococcus gallolyticus and four other CRC-associated bacteria in patient stools reveals a potential “Driver” Role for Enterotoxigenic Bacteroides fragilis. Front. Cell. Infect. Microbiol. 12, 794391 (2022).
Google Scholar
Abdulamir, A. S., Hafidh, R. R. & Bakar, F. A. The association of Streptococcus bovis/gallolyticus with colorectal tumors: The nature and the underlying mechanisms of its etiological role. J. Exp. Clin. Cancer Res. 30, 11 (2011).
Google Scholar
Taddese, R. et al. Growth rate alterations of human colorectal cancer cells by 157 gut bacteria. Gut Microbes. 12(1), 1–20 (2020).
Google Scholar
Danne, C., Guerillot, R., Glaser, P., Trieu-Cuot, P. & Dramsi, S. Construction of isogenic mutants in Streptococcus gallolyticus based on the development of new mobilizable vectors. Res. Microbiol. 164(10), 973–978 (2013).
Google Scholar
Darling, A. C., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14(7), 1394–1403 (2004).
Google Scholar
Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01156-3 (2022).
Google Scholar
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305(3), 567–580 (2001).
Google Scholar
Pallen, M. J. The ESAT-6/WXG100 superfamily and a new Gram-positive secretion system? Trends Microbiol. 10(5), 209–212 (2002).
Google Scholar
Hildebrand, A., Remmert, M., Biegert, A. & Soding, J. Fast and accurate automatic structure prediction with HHpred. Proteins 77(Suppl 9), 128–132 (2009).
Google Scholar
Poulsen, C., Panjikar, S., Holton, S. J., Wilmanns, M. & Song, Y. H. WXG100 protein superfamily consists of three subfamilies and exhibits an α-helical C-terminal conserved residue pattern. PLoS ONE 9(2), e89313 (2014).
Google Scholar
Whitney, J. C. et al. A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. Elife https://doi.org/10.7554/eLife.26938 (2017).
Google Scholar
Zhang, D., de Souza, R. F., Anantharaman, V., Iyer, L. M. & Aravind, L. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct. 7, 18 (2012).
Google Scholar
Klein, T. A., Pazos, M., Surette, M. G., Vollmer, W. & Whitney, J. C. Molecular basis for immunity protein recognition of a type VII secretion system exported antibacterial toxin. J. Mol. Biol. 430(21), 4344–4358 (2018).
Google Scholar
Liu, G. F., Wang, X. X., Su, H. Z. & Lu, G. T. Progress on the GntR family transcription regulators in bacteria. Yi Chuan 43(1), 66–73 (2021).
Google Scholar
Chatterjee, A., Willett, J. L. E., Dunny, G. M. & Duerkop, B. A. Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genet. 17(1), e1009204 (2021).
Google Scholar
Taddese, R. et al. Streptococcus gallolyticus increases expression and activity of aryl hydrocarbon receptor-dependent CYP1 biotransformation capacity in colorectal epithelial cells. Front. Cell. Infect. Microbiol. 11, 740704 (2021).
Google Scholar
Aymeric, L. et al. Colorectal cancer specific conditions promote. Proc. Natl. Acad. Sci. USA 115(2), E283–E291 (2018).
Google Scholar
Martins, M. et al. The Pil3 pilus of Streptococcus gallolyticus binds to intestinal mucins and to fibrinogen. Gut Microbes. 7(6), 526–532 (2016).
Google Scholar
Martins, M. et al. Streptococcus gallolyticus Pil3 Pilus is required for adhesion to colonic mucus and for colonization of mouse distal colon. J. Infect. Dis. 212(10), 1646–1655 (2015).
Google Scholar
Danne, C. et al. Molecular characterization of a Streptococcus gallolyticus genomic island encoding a pilus involved in endocarditis. J. Infect. Dis. 204(12), 1960–1970 (2011).
Google Scholar
Sillanpaa, J. et al. A collagen-binding adhesin, Acb, and ten other putative MSCRAMM and pilus family proteins of Streptococcus gallolyticus subsp. gallolyticus (Streptococcus bovis Group, biotype I). J. Bacteriol. 191(21), 6643–6653 (2009).
Google Scholar
Schiltz, C. J., Lee, A., Partlow, E. A., Hosford, C. J. & Chappie, J. S. Structural characterization of Class 2 OLD family nucleases supports a two-metal catalysis mechanism for cleavage. Nucleic Acids Res. 47(17), 9448–9463 (2019).
Google Scholar
Aravind, L., Leipe, D. D. & Koonin, E. V. Toprim–a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res. 26(18), 4205–4213 (1998).
Google Scholar
Koonin, E. V. & Gorbalenya, A. E. The superfamily of UvrA-related ATPases includes three more subunits of putative ATP-dependent nucleases. Protein Seq. Data Anal. 5(1), 43–45 (1992).
Google Scholar
Kowalski, J. C. et al. Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: Coincidence of computational and molecular findings. Nucleic Acids Res. 27(10), 2115–2125 (1999).
Google Scholar
Van Roey, P., Meehan, L., Kowalski, J. C., Belfort, M. & Derbyshire, V. Catalytic domain structure and hypothesis for function of GIY-YIG intron endonuclease I-TevI. Nat. Struct. Biol. 9(11), 806–811 (2002).
Google Scholar
Truglio, J. J. et al. Structural insights into the first incision reaction during nucleotide excision repair. EMBO J. 24(5), 885–894 (2005).
Google Scholar
Dunin-Horkawicz, S., Feder, M. & Bujnicki, J. M. Phylogenomic analysis of the GIY-YIG nuclease superfamily. BMC Genom. 7, 98 (2006).
Google Scholar
Ibryashkina, E. M., Sasnauskas, G., Solonin, A. S., Zakharova, M. V. & Siksnys, V. Oligomeric structure diversity within the GIY-YIG nuclease family. J. Mol. Biol. 387(1), 10–16 (2009).
Google Scholar
Bruand, C. & Ehrlich, S. D. UvrD-dependent replication of rolling-circle plasmids in Escherichia coli. Mol. Microbiol. 35(1), 204–210 (2000).
Google Scholar
Chang, T. L. et al. Biochemical characterization of the Staphylococcus aureus PcrA helicase and its role in plasmid rolling circle replication. J. Biol. Chem. 277(48), 45880–45886 (2002).
Google Scholar
del Solar, G., Giraldo, R., Ruiz-Echevarría, M. J., Espinosa, M. & Díaz-Orejas, R. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62(2), 434–464 (1998).
Google Scholar
Naqvi, A., Tinsley, E. & Khan, S. A. Purification and characterization of the PcrA helicase of Bacillus anthracis. J. Bacteriol. 185(22), 6633–6639 (2003).
Google Scholar
Khan, S. A. Rolling-circle replication of bacterial plasmids. Microbiol. Mol. Biol. Rev. 61(4), 442–455 (1997).
Google Scholar
Khan, S. A. Plasmid rolling-circle replication: Recent developments. Mol. Microbiol. 37(3), 477–484 (2000).
Google Scholar
Soultanas, P. et al. Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase. Nucleic Acids Res. 27(6), 1421–1428 (1999).
Google Scholar