in

Analysis of dog breed diversity using a composite selection index

[ad_1]

  • Galibert, F., Quignon, P., Hitte, C. & Andre, C. Toward understanding dog evolutionary and domestication history. C R Biol. 334, 190–196. https://doi.org/10.1016/j.crvi.2010.12.011 (2011).

    Article 

    Google Scholar 

  • Club, A. K. The Complete Dog Book 20th edn. (Random House Publishing Group, 2007).

    Google Scholar 

  • American Kennel Club, <https://www.akc.org/> (2022).

  • Australian National Kennel, C. Illustrated breed standards / Australian National Kennel Council. (Royal NSW Canine Council], 1998).

  • Dogs Australia, <https://dogsaustralia.org.au/> (2022).

  • Club, K. The Kennel Club’s Illustrated Breed Standards: The Official Guide to Registered Breeds (Ebury, 2011).

    Google Scholar 

  • The Kennel Club, <https://www.thekennelclub.org.uk/> (2022).

  • Boyko, A. R. et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 8, e1000451. https://doi.org/10.1371/journal.pbio.1000451 (2010).

    Article 
    CAS 

    Google Scholar 

  • Rimbault, M. et al. Derived variants at six genes explain nearly half of size reduction in dog breeds. Gen. Res. 23, 1985–1995. https://doi.org/10.1101/gr.157339.113 (2013).

    Article 
    CAS 

    Google Scholar 

  • Akey, J. M. et al. Tracking footprints of artificial selection in the dog genome. Proc. Nat. Acad Sci. U.S.A. 107, 1160–1165. https://doi.org/10.1073/pnas.0909918107 (2010).

    Article 
    ADS 

    Google Scholar 

  • Yang, Q. et al. Genetic diversity and signatures of selection in 15 chinese indigenous dog breeds revealed by genome-wide SNPs. Front. Genet. 10, 1174. https://doi.org/10.3389/fgene.2019.01174 (2019).

    Article 
    CAS 

    Google Scholar 

  • Akey, J. M., Zhang, G., Zhang, K., Jin, L. & Shriver, M. D. Interrogating a high-density SNP map for signatures of natural selection. Gen. Res. https://doi.org/10.1101/gr.631202 (2002).

    Article 

    Google Scholar 

  • Freedman, A. H. et al. Demographically-based evaluation of genomic regions under selection in domestic dogs. Plos Genet. 12, e1005851. https://doi.org/10.1371/journal.pgen.1005851 (2016).

    Article 
    CAS 

    Google Scholar 

  • Cagan, A. & Blass, T. Identification of genomic variants putatively targeted by selection during dog domestication. BMC Evol. Biol. 16, 10. https://doi.org/10.1186/s12862-015-0579-7 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kim, J. et al. Genetic selection of athletic success in sport-hunting dogs. Proc. Nat. Acad. Sci. U.S.A. 115, E7212–E7221. https://doi.org/10.1073/pnas.1800455115 (2018).

    Article 
    CAS 

    Google Scholar 

  • Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918. https://doi.org/10.1038/nature06250 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vaysse, A. et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. Plos Genet. 7, e1002316. https://doi.org/10.1371/journal.pgen.1002316 (2011).

    Article 
    CAS 

    Google Scholar 

  • Grossman, S. R. et al. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327, 883–886. https://doi.org/10.1126/science.1183863 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Utsunomiya, Y. T. et al. Detecting loci under recent positive selection in dairy and beef cattle by combining different genome-wide scan methods. PLoS ONE 8, e64280. https://doi.org/10.1371/journal.pone.0064280 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Verity, R. et al. minotaur: A platform for the analysis and visualization of multivariate results from genome scans with R Shiny. Mol. Ecol. Resour. 17, 33–43. https://doi.org/10.1111/1755-0998.12579 (2017).

    Article 
    CAS 

    Google Scholar 

  • Randhawa, I. A. S., Khatkar, M. S., Thomson, P. C. & Raadsma, H. W. Composite selection signals can localize the trait specific genomic regions in multi-breed populations of cattle and sheep. BMC Genet. 15, 34–34. https://doi.org/10.1186/1471-2156-15-34 (2014).

    Article 
    CAS 

    Google Scholar 

  • Randhawa, I. A., Khatkar, M. S., Thomson, P. C. & Raadsma, H. W. Composite selection signals for complex traits exemplified through bovine stature using multibreed cohorts of European and African bos taurus. G3(Bethesda) 5, 1391–1401. https://doi.org/10.1534/g3.115.017772 (2015).

    Article 

    Google Scholar 

  • Gutierrez, L. S. & Gutierrez, J. Thrombospondin 1 in metabolic diseases. Front. Endocrinol. (Lausanne) 12, 638536. https://doi.org/10.3389/fendo.2021.638536 (2021).

    Article 

    Google Scholar 

  • Deschenes, M. R. et al. Effects of exercise training on neuromuscular junctions and their active zones in young and aged muscles. Neurobiol. Aging 95, 1–8. https://doi.org/10.1016/j.neurobiolaging.2020.07.001 (2020).

    Article 
    CAS 

    Google Scholar 

  • Patterson, E. E. et al. A canine DNM1 mutation is highly associated with the syndrome of exercise-induced collapse. Nat. Genet. 40, 1235–1239. https://doi.org/10.1038/ng.224 (2008).

    Article 
    CAS 

    Google Scholar 

  • Shelton, G. D. Myasthenia gravis and disorders of neuromuscular transmission. Vet. Clin. North Am. Small Anim. Pract. 32(189–206), vii. https://doi.org/10.1016/s0195-5616(03)00085-8 (2002).

    Article 

    Google Scholar 

  • Buroker, N. E. et al. EPAS1 and EGLN1 associations with high altitude sickness in Han and Tibetan Chinese at the QINGHAI-Tibetan plateau. Blood. Cells Mol. Dis. 49, 67–73. https://doi.org/10.1016/j.bcmd.2012.04.004 (2012).

    Article 
    CAS 

    Google Scholar 

  • vonHoldt, B., Fan, Z., Ortega-Del Vecchyo, D. & Wayne, R. K. EPAS1 variants in high altitude Tibetan wolves were selectively introgressed into highland dogs. Peer J. 5, e3522. https://doi.org/10.7717/peerj.3522 (2017).

    Article 
    CAS 

    Google Scholar 

  • Edea, Z., Dadi, H., Dessie, T. & Kim, K. S. Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Gen. Genom. 41, 973–981. https://doi.org/10.1007/s13258-019-00820-y (2019).

    Article 

    Google Scholar 

  • Zhang, J. et al. P4HB, a novel hypoxia target gene related to gastric cancer invasion and metastasis. Biomed. Res. Int. 2019, 9749751. https://doi.org/10.1155/2019/9749751 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Patterson, A. J., Xiao, D., Xiong, F., Dixon, B. & Zhang, L. Hypoxia-derived oxidative stress mediates epigenetic repression of PK Cepsilon gene in foetal rat hearts. Cardiovasc. Res. 93, 302–310. https://doi.org/10.1093/cvr/cvr322 (2012).

    Article 
    CAS 

    Google Scholar 

  • Pham, K., Parikh, K. & Heinrich, E. C. Hypoxia and inflammation: insights from high-altitude physiology. Front. Physiol. https://doi.org/10.3389/fphys.2021.676782 (2021).

    Article 

    Google Scholar 

  • Günter, J., Ruiz-Serrano, A., Pickel, C., Wenger, R. H. & Scholz, C. C. The functional interplay between the HIF pathway and the ubiquitin system—more than a one-way road. Exp. Cell Res. 356, 152–159. https://doi.org/10.1016/j.yexcr.2017.03.027 (2017).

    Article 
    CAS 

    Google Scholar 

  • Fan, R. et al. A positive correlation between elevated altitude and frequency of mutant alleles at the EPAS1 and HBB Loci in Chinese indigenous dogs. J. Genet. Genom. 42, 173–177. https://doi.org/10.1016/j.jgg.2015.02.006 (2015).

    Article 

    Google Scholar 

  • Li, Y. et al. Population variation revealed high-altitude adaptation of Tibetan mastiffs. Mol. Biol. Evol. 31, 1200–1205. https://doi.org/10.1093/molbev/msu070 (2014).

    Article 
    CAS 

    Google Scholar 

  • Simonson, T. S. et al. Genetic evidence for high-altitude adaptation in Tibet. Science 329, 72–75. https://doi.org/10.1126/science.1189406 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Quan, C. et al. Characterization of structural variation in Tibetans reveals new evidence of high-altitude adaptation and introgression. Genom. Biol. 22, 159. https://doi.org/10.1186/s13059-021-02382-3 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kuhn, H., Banthiya, S. & van Leyen, K. Mammalian lipoxygenases and their biological relevance. Biochem. Biophys. Acta. 308–330, 2015. https://doi.org/10.1016/j.bbalip.2014.10.002 (1851).

    Article 
    CAS 

    Google Scholar 

  • Truog, W. E. et al. Chronic hypoxia and rat lung development: Analysis by morphometry and directed microarray. Pediatr. Res. 64, 56–62. https://doi.org/10.1203/PDR.0b013e31817289f2 (2008).

    Article 

    Google Scholar 

  • Sharma, K. et al. High-altitude pulmonary edema is aggravated by risk loci and associated transcription factors in HIF-prolyl hydroxylases. Hum. Mol. Genet. 30, 1734–1749. https://doi.org/10.1093/hmg/ddab139 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cortesi, E. E. et al. Increased LGR6 expression sustains long-term wnt activation and acquisition of senescence in epithelial progenitors in chronic lung diseases. Cells 10, 3437 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhao, M. et al. Non-proteolytic ubiquitination of OTULIN regulates NF-κB signaling pathway. J. Mol. Cell Biol. 12, 163–175. https://doi.org/10.1093/jmcb/mjz081 (2019).

    Article 
    CAS 

    Google Scholar 

  • Choi, J. H., Jeong, S. Y., Oh, M. R., Allen, P. D. & Lee, E. H. TRPCs: Influential mediators in skeletal muscle. Cells https://doi.org/10.3390/cells9040850 (2020).

    Article 

    Google Scholar 

  • Conte, E. et al. Alteration of STIM1/Orai1-mediated SOCE in skeletal muscle: Impact in genetic muscle diseases and beyond. Cells https://doi.org/10.3390/cells10102722 (2021).

    Article 

    Google Scholar 

  • Pfeffer, G. et al. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain 137, 1323–1336. https://doi.org/10.1093/brain/awu060 (2014).

    Article 

    Google Scholar 

  • Sacco, T. et al. Mouse brain expression patterns of Spg7, Afg3l1, and Afg3l2 transcripts, encoding for the mitochondrial m-AAA protease. BMC Neurosci. 11, 55. https://doi.org/10.1186/1471-2202-11-55 (2010).

    Article 
    CAS 

    Google Scholar 

  • Axelsson, E. et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495, 360–364. https://doi.org/10.1038/nature11837 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Braz, C. U. et al. Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle. BMC Genet. 20, 1 (2019).

    Article 

    Google Scholar 

  • Guo, Y., Li, J., Bonham, A. J., Wang, Y. & Deng, H. Gains in power for exhaustive analyses of haplotypes using variable-sized sliding window strategy: A comparison of association-mapping strategies. Eur. J. Hum. Genet. 17, 785–792. https://doi.org/10.1038/ejhg.2008.244 (2009).

    Article 
    CAS 

    Google Scholar 

  • Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D. & de Leon, N. Defining window-boundaries for genomic analyses using smoothing spline techniques. Genet. Sel. Evol. 47, 30. https://doi.org/10.1186/s12711-015-0105-9 (2015).

    Article 
    CAS 

    Google Scholar 

  • Dai, J. Y., Leblanc, M., Smith, N. L., Psaty, B. & Kooperberg, C. Share: An adaptive algorithm to select the most informative set of SNPs for candidate genetic association. Biostatistics 10, 680–693. https://doi.org/10.1093/biostatistics/kxp023 (2009).

    Article 
    MATH 

    Google Scholar 

  • Biswas, S. & Akey, J. M. Genomic insights into positive selection. Trends Genet. 22, 437–446. https://doi.org/10.1016/j.tig.2006.06.005 (2006).

    Article 
    CAS 

    Google Scholar 

  • Morrill, K. et al. Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science 376, eabk0639. https://doi.org/10.1126/science.abk0639 (2022).

    Article 
    CAS 

    Google Scholar 

  • Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. https://doi.org/10.1086/519795 (2007).

    Article 
    CAS 

    Google Scholar 

  • Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097. https://doi.org/10.1086/521987 (2007).

    Article 
    CAS 

    Google Scholar 

  • Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348. https://doi.org/10.1016/j.ajhg.2018.07.015 (2018).

    Article 
    CAS 

    Google Scholar 

  • Browning, S. R. & Browning, B. L. Haplotype phasing: Existing methods and new developments. Nat. Rev. Genet. 12, 703–714 (2011).

    Article 
    CAS 

    Google Scholar 

  • Arouisse, B., Korte, A., van Eeuwijk, F. & Kruijer, W. Imputation of 3 million SNPs in the arabidopsis regional mapping population. Plant J. 102, 872–882. https://doi.org/10.1111/tpj.14659 (2020).

    Article 
    CAS 

    Google Scholar 

  • Szpiech, Z. A. & Hernandez, R. D. selscan: An efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824–2827. https://doi.org/10.1093/molbev/msu211 (2014).

    Article 
    CAS 

    Google Scholar 

  • Porto-Neto, L. R., Lee, S. H., Lee, H. K. & Gondro, C. Detection of signatures of selection using Fst. Method Mol. Biol. 1019, 423–436. https://doi.org/10.1007/978-1-62703-447-0_19 (2013).

    Article 
    CAS 

    Google Scholar 

  • Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370. https://doi.org/10.2307/2408641 (1984).

    Article 
    CAS 

    Google Scholar 

  • Weir, B. S., Cardon, L. R., Anderson, A. D., Nielsen, D. M. & Hill, W. G. Measures of human population structure show heterogeneity among genomic regions. Genome Res. 15, 1468–1476. https://doi.org/10.1101/gr.4398405 (2005).

    Article 
    CAS 

    Google Scholar 

  • Fitak, R. R., Rinkevich, S. E. & Culver, M. Genome-wide analysis of SNPs Is consistent with no domestic dog ancestry in the endangered mexican wolf (Canis lupus baileyi). J. Hered. 109, 372–383. https://doi.org/10.1093/jhered/esy009 (2018).

    Article 
    CAS 

    Google Scholar 

  • da Huang, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57. https://doi.org/10.1038/nprot.2008.211 (2009).

    Article 
    CAS 

    Google Scholar 

  • da Huang, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic. Acids Res. 37, 1–13. https://doi.org/10.1093/nar/gkn923 (2009).

    Article 
    CAS 

    Google Scholar 

  • Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504. https://doi.org/10.1101/gr.1239303 (2003).

    Article 
    CAS 

    Google Scholar 

  • Bindea, G., Galon, J. & Mlecnik, B. CluePedia Cytoscape plugin: Pathway insights using integrated experimental and in silico data. Bioinformatics 29, 661–663. https://doi.org/10.1093/bioinformatics/btt019 (2013).

    Article 
    CAS 

    Google Scholar 

  • Bindea, G. et al. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093. https://doi.org/10.1093/bioinformatics/btp101 (2009).

    Article 
    CAS 

    Google Scholar 

  • [ad_2]

    Source link

    What do you think?

    Leave a Reply

    GIPHY App Key not set. Please check settings

      delcath corporate logo tagline Logo

      Delcath Systems will be at the BTIG MedTech, Digital Health, Life Sciences and Diagnostic Tools conference February 14-16.

      metrotechs digital marketing ag

      Metrotechs Expands Presence to Frisco, Texas, Offering Free SEO Tools and Resources to Small Businesses